Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite.
نویسندگان
چکیده
The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg(2+) and randomly placing two H(+) in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1-H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4-H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies.
منابع مشابه
Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite† †Electronic supplementary information (ESI) available: Further information on the structures generated by AIRSS, alternative structural models, supercell calculations, total enthalpies of all computed structures and further information on 1H/2H NMR parameters. Example input and all raw output files from AIRSS and CASTEP NMR calculations are also included. See DOI: 10.1039/c6cp01529h Click here for additional data file.
متن کامل
Forsterite, hydrous and anhydrous wadsleyite and ringwoodite (Mg2SiO4): 29Si NMR results for chemical shift anisotropy, spin-lattice relaxation, and mechanism of hydration
We present a detailed 29Si NMR spectroscopic study of isotopically enriched samples of forsterite and of anhydrous and hydrous wadsleyite and ringwoodite (α, β, and γ phases of Mg2SiO4), which complement previous extensive studies of these minerals by XRD and vibrational spectroscopy. VISi is not detected in any of the phases at levels of about 0.1 to 0.5%. When coupled with recent theoretical ...
متن کاملWadsleyite II: A new high pressure hydrous phase in the peridotite-H2O system
A new hydrous silicate phase with formula Mg1.71Fe0.177Al0.01Si0.965H0.332O4 has been synthesized at 1400°C and 17.5GPa from a hydrous iron-rich mantle peridotite composition. The space group is Imma and unit cell parameters a = 5.6884(4); b = 28.9238(15); and c = 8.2382(6)Å, so that a and c are approximately those of wadsleyite, whereas b is 2.5 times that of wadsleyite. The calculated density...
متن کاملQuantitative analysis of hydrogen sites and occupancy in deep mantle hydrous wadsleyite using single crystal neutron diffraction
Evidence from seismological and mineralogical studies increasingly indicates that water from the oceans has been transported to the deep earth to form water-bearing dense mantle minerals. Wadsleyite [(Mg, Fe2+)2SiO4] has been identified as one of the most important host minerals incorporating this type of water, which is capable of storing the entire mass of the oceans as a hidden reservoir. To...
متن کاملHigh-pressure Raman spectroscopic study of Fo90 hydrous wadsleyite
Raman spectra of monoclinic Fo90 hydrous wadsleyite with 2.4 wt% H2O have been measured in a diamond-anvil cell with helium as a pressure-transmitting medium to 58.4 GPa at room temperature. The most intense, characteristic wadsleyite modes, the Si–O– Si symmetric stretch at 721 cm 1 and the symmetric stretch of the SiO3 unit at 918 cm , shift continuously to 58.4 GPa showing no evidence of a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 15 شماره
صفحات -
تاریخ انتشار 2016